$$dW_{c}/d\mathbf{J} + dW_{F}^{I}/d\mathbf{J} + dW_{F}^{II}/d\mathbf{J} = 0$$
(6)

$$d^2 W_c / d\xi^2 + d^2 W_F^I / d\xi^2 + d^2 W_F^{II} / d\xi^2 = C_H$$
 (7)

$$a^{2}W_{c}/d\eta^{2} + a^{2}W_{F}^{I}/d\eta^{2} + a^{2}W_{F}^{II}/d\eta^{2} = c_{66}$$
(8)

The density of states at the Fermi level may be calculated from measurements of the electronic specific heat. The data reported by Clement⁽²⁰⁾, gives the total density of states per unit energy range at the Fermi level as $N_f = 8.73 \times 10^{33} \text{ erg}^{-1} \text{ cm}^{-3}$.

In order to explore for solutions, Equations 6, 7 and 8 can be graphed with the free parameters Z^2 and $\boldsymbol{\alpha}_o$ as coordinates. In this form the slopes of the lines are the ratio of the numerical coefficient of $\boldsymbol{\alpha}_o$ to the coefficient of Z^2 (Table 3), and the Z^2 intercepts are related to the appropriate derivative of W_F^{II} (a function of n_i , N_i , E_i). Values of the n_i and E_i were first estimated from free electron theory (the n_i then automatically complying with Equation 4) and reasonable values of the N_i that satisfy Equation 5 were chosen. This graph is shown in Fig. 3 and the lack of intersections demonstrates the unavailability of simultaneous solutions for the three equations with a physically possible value of Z^2 .

-21-